
A Not-so-brief Introduction to R

Sean Davis
with large contributions by

Naomi Altman and Mark Reimers

National Cancer Institute
National Institutes of Health

sdavis2@mail.nih.gov

June 20, 2013

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 1 / 59

1 R Overview

2 R Mechanics

3 Resources for Getting Help

4 Vectors

5 Rectangular Data

6 Plotting and Graphics

7 Control Structures, Looping, and Applying

8 Functions

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 2 / 59

What is R?

A software package

A programming language

A toolkit for developing statistical and analytical tools

An extensive library of statistical and mathematical software and
algorithms

A scripting language

. . .

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 3 / 59

Why R?

R is cross-platform and runs on Windows, Mac, and Linux (as well as
more obscure systems).

R provides a vast number of useful statistical tools, many of which
have been painstakingly tested.

R produces publication-quality graphics in a variety of formats.

R plays well with FORTRAN, C, and scripts in many languages.

R scales, making it useful for small and large projects. It is NOT
Excel.

R eschews the GUI.

Anecdote

I can develop code for analysis on my Mac laptop. I can then install the
same code on our 20k core cluster and run it in parallel on 100 samples,
monitor the process, and then update a database with R when complete.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 4 / 59

Why Not R?

R cannot do everything.

R is not always the “best” tool for the job.

R will not hold your hand.

The documentation can be opaque.

R can drive you crazy (on a good day) or age you prematurely (on a
bad one).

Finding the right package to do the job you want to do can be
challenging; worse, some contributed packages are unreliable.

R eschews the GUI.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 5 / 59

R License and the Open Source Ideal

R is free!

Distributed under GNU license

You may download the source code.
You may modify the source code to your heart’s content.
You may distribute the modified source code and even charge money
for it, but you must distribute the modified source code under the
original GNU license

Take-home Message

This license means that R will always be available, will always be open
source, and can grow organically without constraint.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 6 / 59

Installing R

Figure : The CRAN website, home of the R project.Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 7 / 59

http://cran.r-project.org

Starting R

Depends on operating system and interface

Linux command line

$ R

In this course, we will largely be using a GUI called RStudio

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 8 / 59

The RStudio Interface

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 9 / 59

Getting Started

R Commands are either:
1 Assignments

> x = 1

> y <- 2

2 Expressions
> 1 + pi + sin(3.7)

[1] 3.611757

The “<-” and “=” are both assignment operators.

The standard R prompt is a “>” sign.

If a line is not a complete R command, R will continue the next line
with a “+”.
> 1 + pi +

+ sin(3.7)

[1] 3.611757

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 10 / 59

Rules for Names in R

Any combination of letters, numbers, underscore, and “.”

May not start with numbers, underscore.

R is case-sensitive.

Examples

pi

x

camelCaps

my_stuff

MY_Stuff

this.is.the.name.of.the.man

ABC123

abc1234asdf

.hi

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 11 / 59

R Help Functions

If you know the name of the function or object on which you want
help:
> help(print)

> help('print')
> ?print

If you do not know the name of the function or object on which you
want help:
> help.search('microarray')
> RSiteSearch('microarray')

Many online resources which you will collect over the space of the
course

Using Help

I strongly recommend using help(newfunction) for all functions that are
new or unfamiliar to you.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 12 / 59

Vectors

In R, even a single value is a vector with length=1.
> z = 1

> z

[1] 1

> length(z)

[1] 1

Vectors can contain numbers, strings (character data), or logical
values (TRUE and FALSE)

Vectors cannot contain a mix of types!

Character Vectors

Character vectors are entered with each value surrounded by single or
double quotes; either is acceptable, but they must match. They are always
displayed by R with double quotes.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 13 / 59

Vectors

Example Vectors
> # examples of vectors

> c('hello','world')

[1] "hello" "world"

> c(1,3,4,5,1,2)

[1] 1 3 4 5 1 2

> c(1.12341e7,78234.126)

[1] 11234100.00 78234.13

> c(TRUE,FALSE,TRUE,TRUE)

[1] TRUE FALSE TRUE TRUE

> # note how in the next case the TRUE is converted to "TRUE"

> c(TRUE,'hello')

[1] "TRUE" "hello"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 14 / 59

Regular Sequences

> # create a vector of integers from 1 to 10

> x = 1:10

> # and backwards

> x = 10:1

> # create a vector of numbers from 1 to 4 skipping by 0.3

> y = seq(1,4,0.3)

> # create a sequence by concatenating two other sequences

> z = c(y,x)

> z

[1] 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 10.0 9.0 8.0 7.0

[16] 6.0 5.0 4.0 3.0 2.0 1.0

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 15 / 59

Vector Operations

Operations on a single vector are typically done element-by-element

If the operation involves two vectors:

Same length: R simply applies the operation to each pair of elements.
Different lengths, but one length a multiple of the other: R reuses the
shorter vector as needed
Different lengths, but one length not a multiple of the other: R reuses
the shorter vector as needed and delivers a warning

Typical operations include multiplication (“*”), addition, subtraction,
division, exponentiation (“ ’̂’), but many operations in R operate on
vectors and are then called “vectorized”.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 16 / 59

Summary of Simple Data Types

Data type Stores

real floating point numbers
integer integers

complex complex numbers
factor categorical data

character strings
logical TRUE or FALSE

NA missing
NULL empty

function function type

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 17 / 59

Vector Operations

> x = 1:10

> x+x

[1] 2 4 6 8 10 12 14 16 18 20

> y = 7

> x * y

[1] 7 14 21 28 35 42 49 56 63 70

> y = c(1,2,3)

> z = x * y

> length(z)

[1] 10

> z

[1] 1 4 9 4 10 18 7 16 27 10

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 18 / 59

Logical Vectors

Logical vectors are vectors composed on only the values TRUE and FALSE.
Note the all-upper-case and no quotation marks.
> a = c(TRUE,FALSE,TRUE)

> # we can also create a logical vector from a numeric vector

> # 0 = false, everything else is 1

> b = c(1,0,217)

> d = as.logical(b)

> d

[1] TRUE FALSE TRUE

> # test if a and d are the same at every element

> all.equal(a,d)

[1] TRUE

> # We can also convert from logical to numeric

> as.numeric(a)

[1] 1 0 1

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 19 / 59

Logical Operators

Some operators like <, >, ==, >=, <=, != can be used to create logical
vectors.
> # create a numeric vector

> x = 1:10

> # testing whether x > 5 creates a logical vector

> x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> x <= 5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

> x != 5

[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE

> x == 5

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

> # we can also assign the results to a variable

> y = (x == 5)

> y

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 20 / 59

Indexing Vectors

In programming, an index is used to refer to a specific element or set
of elements in an vector (or other data structure).

R uses [and] to perform indexing.
> x = seq(0,1,0.1)

> # create a new vector from the 4th element of x

> x[4]

[1] 0.3

Indexing can use other vectors for the indexing
> x[c(3,5,6)]

[1] 0.2 0.4 0.5

> y = 3:6

> x[y]

[1] 0.2 0.3 0.4 0.5

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 21 / 59

Indexing Vectors and Logical Vectors

Combining the concept of indexing with the concept of logical vectors
results in a very power combination.
> # use help('rnorm') to figure out what is happening next

> myvec = rnorm(10)

> # create logical vector that is TRUE where myvec is >0.25

> gt1 = (myvec > 0.25)

> sum(gt1)

[1] 4

> # and use our logical vector to create a vector of myvec values that are >0.25

> myvec[gt1]

[1] 0.3237475 0.6520995 0.9675606 0.3100266

> # or <=0.25 using the logical "not" operator, "!"

> myvec[!gt1]

[1] -0.9934311 -0.1788812 0.2031855 -1.7973919 -2.0211704 -1.0011444

> # shorter, one line approach

> myvec[myvec > 0.25]

[1] 0.3237475 0.6520995 0.9675606 0.3100266

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 22 / 59

Concatenating Strings

R uses the paste function to concatenate strings.
> paste("abc","def")

[1] "abc def"

> paste("abc","def",sep="THISSEP")

[1] "abcTHISSEPdef"

> paste0("abc","def")

[1] "abcdef"

> paste(c("X","Y"),1:10)

[1] "X 1" "Y 2" "X 3" "Y 4" "X 5" "Y 6" "X 7" "Y 8" "X 9" "Y 10"

> paste(c("X","Y"),1:10,sep="_")

[1] "X_1" "Y_2" "X_3" "Y_4" "X_5" "Y_6" "X_7" "Y_8" "X_9" "Y_10"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 23 / 59

More String Functions

Number of characters in a string
> nchar('abc')

[1] 3

> nchar(c('abc','d',123456))

[1] 3 1 6

Extract substrings
> substr('This is a good sentence.',start=10,stop=15)

[1] " good "

String replacement
> sub('This','That','This is a good sentence.')

[1] "That is a good sentence."

Finding matching strings
> grep('bcd',c('abcdef','abcd','bcde','cdef','defg'))

[1] 1 2 3

> grep('bcd',c('abcdef','abcd','bcde','cdef','defg'),value=TRUE)

[1] "abcdef" "abcd" "bcde"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 24 / 59

Missing Values, AKA“NA”

R has a special value, “NA”, that represents a “missing” value in a vector or
other data structure.
> x = 1:5

> x

[1] 1 2 3 4 5

> length(x)

[1] 5

> is.na(x)

[1] FALSE FALSE FALSE FALSE FALSE

> x[2] = NA

> x

[1] 1 NA 3 4 5

> length(x)

[1] 5

> is.na(x)

[1] FALSE TRUE FALSE FALSE FALSE

> x[!is.na(x)]

[1] 1 3 4 5

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 25 / 59

Factors

A factor is a special type of vector, normally used to hold a
categorical variable in many statistical functions.

Such vectors have class “factor”.

Factors are primarily used in Analysis of Variance (ANOVA). When a
factor is used as a predictor variable, the corresponding indicator
variables are created.

Note of caution

Factors in R often appear to be character vectors when printed, but you
will notice that they do not have double quotes around them. They are
stored in R as numbers with a key name, so sometimes you will note that
the factor behaves like a numeric vector.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 26 / 59

Factors in Practice

> # create the character vector

> citizen<-c("uk","us","no","au","uk","us","us","no","au")

> # convert to factor

> citizenf<-factor(citizen)

> citizen

[1] "uk" "us" "no" "au" "uk" "us" "us" "no" "au"

> citizenf

[1] uk us no au uk us us no au

Levels: au no uk us

> # convert factor back to character vector

> as.character(citizenf)

[1] "uk" "us" "no" "au" "uk" "us" "us" "no" "au"

> # convert to numeric vector

> as.numeric(citizenf)

[1] 3 4 2 1 3 4 4 2 1

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 27 / 59

Factors in Practice

> # R stores many data structures as vectors with "attributes" and "class"

> attributes(citizenf)

$levels

[1] "au" "no" "uk" "us"

$class

[1] "factor"

> class(citizenf)

[1] "factor"

> # note that after unclassing, we can see the

> # underlying numeric structure again

> unclass(citizenf)

[1] 3 4 2 1 3 4 4 2 1

attr(,"levels")

[1] "au" "no" "uk" "us"

> table(citizenf)

citizenf

au no uk us

2 2 2 3

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 28 / 59

Matrices and Data Frames

A matrix is a rectangular array. It can be viewed as a collection of
column vectors all of the same length and the same type (i.e.
numeric, character or logical).

A data frame is also a rectangular array. All of the columns must be
the same length, but they may be of different types.

The rows and columns of a matrix or data frame can be given names.

However these are implemented differently in R; many operations will
work for one but not both.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 29 / 59

Matrix Operations

> x<-1:10

> y<-rnorm(10)

> # make a matrix by column binding two numeric vectors

> mat<-cbind(x,y)

> mat

x y

[1,] 1 -0.07766897

[2,] 2 0.32251675

[3,] 3 -0.93330800

[4,] 4 0.08720295

[5,] 5 0.22420746

[6,] 6 -1.44783676

[7,] 7 -0.27375874

[8,] 8 -0.71951793

[9,] 9 0.42300744

[10,] 10 0.56283346

> # And the names of the rows and columns

> rownames(mat)

NULL

> colnames(mat)

[1] "x" "y"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 30 / 59

Matrix Operations

Indexing for matrices works as for vectors except that we now need to
include both the row and column (in that order).
> # The 2nd element of the 1st row of mat

> mat[1,2]

y

-0.07766897

> # The first ROW of mat

> mat[1,]

x y

1.00000000 -0.07766897

> # The first COLUMN of mat

> mat[,1]

[1] 1 2 3 4 5 6 7 8 9 10

> # and all elements of mat that are > 4; note no comma

> mat[mat>4]

[1] 5 6 7 8 9 10

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 31 / 59

Matrix Operations

> # create a matrix with 2 columns and 10 rows

> # filled with random normal deviates

> m = matrix(rnorm(20),nrow=10)

> # multiply all values in the matrix by 20

> m = m*20

> # and add 100 to the first column of m

> m[,1] = m[,1] + 100

> # summarize m

> summary(m)

V1 V2

Min. : 72.34 Min. :-23.0868

1st Qu.: 93.89 1st Qu.:-13.1655

Median :101.82 Median : 1.8782

Mean : 99.44 Mean : -0.0417

3rd Qu.:108.63 3rd Qu.: 5.2301

Max. :115.28 Max. : 27.7691

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 32 / 59

Matrices Versus Data Frames

> mat<-cbind(x,y)

> class(mat[,1])

[1] "numeric"

> z = paste0('a',1:10)
> tab<-cbind(x,y,z)

> class(tab)

[1] "matrix"

> mode(tab[,1])

[1] "character"

> head(tab,4)

x y z

[1,] "1" "-0.0776689734184697" "a1"

[2,] "2" "0.322516745291016" "a2"

[3,] "3" "-0.933307997583061" "a3"

[4,] "4" "0.0872029450940778" "a4"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 33 / 59

Matrices Versus Data Frames

> tab<-data.frame(x,y,z)

> class(tab)

[1] "data.frame"

> head(tab)

x y z

1 1 -0.07766897 a1

2 2 0.32251675 a2

3 3 -0.93330800 a3

4 4 0.08720295 a4

5 5 0.22420746 a5

6 6 -1.44783676 a6

> mode(tab[,1])

[1] "numeric"

> class(tab[,3])

[1] "factor"

> rownames(tab)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

> rownames(tab)<-paste0("row",1:10)

> rownames(tab)

[1] "row1" "row2" "row3" "row4" "row5" "row6" "row7" "row8" "row9"

[10] "row10"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 34 / 59

Data Frames, Continued

Data frame columns can be refered to by name using the “dollar sign”
operator
> tab$x

[1] 1 2 3 4 5 6 7 8 9 10

> tab$y

[1] -0.07766897 0.32251675 -0.93330800 0.08720295 0.22420746 -1.44783676

[7] -0.27375874 -0.71951793 0.42300744 0.56283346

Column names can be set, which can be useful for referring to data
later
> colnames(tab)

[1] "x" "y" "z"

> colnames(tab) = paste0('col',1:3)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 35 / 59

Exercise: Subsetting Data Frames

Try these
> ncol(tab)

> nrow(tab)

> dim(tab)

> summary(tab)

> tab[1:3,]

> tab[,2:3]

> tab[,1]>7

> tab[tab[,1]>7,]

> tab[tab[,1]>7,3]

> tab[tab[,1]>7,2:3]

> tab[tab$x>7,3]

> tab$z[tab$x>3]

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 36 / 59

Reading and Writing Data Frames to Disk

The write.table function and friends write a data.frame or matrix
to disk as a text file.
> write.table(tab,file='tab.txt',sep="\t",col.names=TRUE)
> # remove tab from the workspace

> rm(tab)

> # make sure it is gone

> ls(pattern="tab")

character(0)

The read.table function and friends read a data.frame or matrix
from a text file.
> tab = read.table('tab.txt',sep="\t",header=TRUE)
> head(tab,3)

col1 col2 col3

row1 1 -0.07766897 a1

row2 2 0.32251675 a2

row3 3 -0.93330800 a3

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 37 / 59

Lists

A list is a collection of objects that may be the same or different
types.

The objects generally have names, and may be indexed either by
name (e.g. my.list$name3) or component number (e.g. my.list[[3]]).

A data frame is a list of matched column vectors.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 38 / 59

Lists in Practice

Create a list, noting the different data types involved.
> a = list(1,"b",c(1,2,3))

> a

[[1]]

[1] 1

[[2]]

[1] "b"

[[3]]

[1] 1 2 3

> length(a)

[1] 3

> class(a)

[1] "list"

> a[[3]]

[1] 1 2 3

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 39 / 59

Lists in Practice

A data frame is a list.
> # test if our friend "tab" is a list

> is.list(tab)

[1] TRUE

> tab[[2]]

[1] -0.07766897 0.32251675 -0.93330800 0.08720295 0.22420746 -1.44783676

[7] -0.27375874 -0.71951793 0.42300744 0.56283346

> names(tab)

[1] "col1" "col2" "col3"

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 40 / 59

Summary of Simple Data Types

Data type Stores

real floating point numbers
integer integers

complex complex numbers
factor categorical data

character strings
logical TRUE or FALSE

NA missing
NULL empty

function function type

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 41 / 59

Summary of Aggregate Data Types

Data type Stores

vector one-dimensional data, single data type
matrix two-dimensional data, single data type

data frame two-dimensional data, multiple data types
list list of data types, not all need to be the same type

object a list with attributes and potentially slots and methods

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 42 / 59

Basic Plot Functions

The command plot(x,y) will plot vector x as the independent
variable and vector y as the dependent variable.

Within the command line, you can specify the title of the graph, the
name of the x-axis, and the name of the y-axis.

main=’title’
xlab=’name of x axis’
ylab=’name of y axis’

The command lines(x,y) adds a line segment to the plot.

The command points(x,y) adds points to the plot.

A legend can be created using legend.

demo
> demo(graphics)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 43 / 59

Simple Plotting Example

Try this yourself:
> x = 1:100

> y = rnorm(100,3,1) # 100 random normal deviates with mean=3, sd=1

> plot(x,y)

> plot(x,y,main='My First Plot')
> # change point type

> plot(x,y,pch=3)

> # change color

> plot(x,y,pch=4,col=2)

> # draw lines between points

> lines(x,y,col=3)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 44 / 59

More Plotting

> z=sort(y)

> # plot a sorted variable vs x

> plot(x,z,main='Random Normal Numbers',
+ xlab='Index',ylab='Random Number')
> # another example

> plot(-4:4,-4:4)

> # and add a point at (0,2) to the plot

> points(0,2,pch=6,col=12)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 45 / 59

More Plotting

> # check margin and outer margin settings

> par(c("mar", "oma"))

> plot(x,y)

> par(oma=c(1,1,1,1)) # set outer margin

> plot(x,y)

> par(mar=c(2.5,2.1,2.1,1)) # set margin

> plot(x,y)

> # A basic histogram

> hist(z, main="Histogram",

+ sub="Random normal")

> # A "density" plot

> plot(density(z), main="Density plot",

+ sub="Random normal")

> # A smaller "bandwidth" to capture more detail

> plot(density(z, adjust=0.5),

+ sub="smaller bandwidth")

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 46 / 59

Graphics Devices and Saving Plots

to make a plot directly to a file use: png(), postscript(), etc.

R can have multiple graphics “devices” open.

To see a list of active devices: dev.list()

To close the most recent device: dev.off()

To close device 5: dev.off(5)

To use device 5: dev.set(5)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 47 / 59

More Plotting

Save a png image to a file
> png(file="myplot.png",width=480,height=480)

> plot(density(z,adjust=2.0),sub="larger bandwidth")

> dev.off()

On your own, save a pdf to a file. NOTE: The dimensions in pdf()

are in inches

Multiple plots on the same page:
> par(mfrow=c(2,1))

> plot(density(z,adjust=2.0),sub="larger bandwidth")

> hist(z)

> # use dev.off() to turn off the two-row plotting

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 48 / 59

R Graphics Galleries and Resources

Visit these sites for some ideas.

http://www.sr.bham.ac.uk/~ajrs/R/r-gallery.html

http://gallery.r-enthusiasts.com/

http://cran.r-project.org/web/views/Graphics.html

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 49 / 59

http://www.sr.bham.ac.uk/~ajrs/R/r-gallery.html
http://gallery.r-enthusiasts.com/
http://cran.r-project.org/web/views/Graphics.html

Control Structures in R

R has multiple types of control structures that allows for sequential
evaluation of statements.

For loops

for (x in set) {operations}

while loops

while (x in condition){operations}

If statements (conditional)

if (condition) {

some operations

} else { other operations }

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 50 / 59

Control Structure and Looping Examples

> x<-1:9

> length(x)

> # a simple conditional then two expressions

> if (length(x)<=10) {

+ x<-c(x,10:20);print(x)}

> # more complex

> if (length(x)<5) {

+ print(x)

+ } else {

+ print(x[5:20])

+ }

> # print the values of x, one at a time

> for (i in x) print(i)

> for(i in x) i # note R will not echo in a loop

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 51 / 59

Control Structure and Looping Examples

> # loop over a character vector

> y<-c('a','b','hi there')
> for (i in y) print(i)

> # and a while loop

> j<-1

> while(j<10) { # do this while j<10

+ print(j)

+ j<-j+2} # at each iteration, increase j by 2

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 52 / 59

Why Does R Have Apply Functions

Often we want to apply the same function to all the rows or columns
of a matrix, or all the elements of a list.

We could do this in a loop, but loops take a lot of time in an
interpreted language like R.

R has more efficient built-in operators, the apply functions.

example

If mat is a matrix and fun is a function (such as mean, var, lm ...) that
takes a vector as its argument, then you can:

apply(mat,1,fun) # over rows--second argument is 1

apply(mat,2,fun) # over columns--second argument is 2

In either case, the output is a vector.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 53 / 59

Apply Function Exercise

1 Using the matrix and rnorm functions, create a matrix with 20 rows
and 10 columns (200 values total) of random normal deviates.

2 Compute the mean for each row of the matrix.

3 Compute the median for each column.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 54 / 59

Related Apply Functions

lapply(list, function) applies the function to every element of
list

sapply(list or vector, function) applies the function to every
element of list or vector, and returns a vector, when possible (easier
to process)

tapply(x, factor, fun) uses the factor to split vector x into
groups, and then applies fun to each group

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 55 / 59

Related Apply Function Examples

> # create a list

> my.list <- list(a=1:3,b=5:10,c=11:20)

> my.list

> # Get the mean for each member of the list

> # return a vector

> sapply(my.list, mean)

> # Get the full summary for each member of

> # the list, returned as a list

> lapply(my.list, summary)

> # Find the mean for each group defined by a factor

> my.vector <- 1:10

> my.factor <- factor(

+ c(1,1,1,2,2,2,3,3,3,3))

> tapply(my.vector, my.factor, mean)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 56 / 59

Function Overview

Functions are objects and are assigned to names, just like data.

myFunction = function(argument1,argument2) {

expression1

expression2

}

We write functions for anything we need to do again and again.

You may test your commands interactively at first, and then use the
history() feature and an editor to create the function.

It is wise to include a comment at the start of each function to say
what it does and to document functions of more than a few lines.

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 57 / 59

Example Functions

> add1 = function(x) {

+ # this function adds one to the first argument and returns it

+ x + 1

+ }

> add1(17)

[1] 18

> add1(c(17,18,19,20))

[1] 18 19 20 21

You can use the edit() function to make changes to a function. The
following command will open a window, allow you to make changes, and
assign the result to a new function, add2.
> add2 = edit(add1)

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 58 / 59

Further Reading

The amount of learning material for R is simply astonishing!

Thomas Girke’s R and Bioconductor Manual

A HUGE collection of contributed R documentation and tutorials

Bioconductor course materials

Sean Davis’ website

The Official R Manuals

Sean Davis with large contributions by Naomi Altman and Mark Reimers (NCI, NIH)Introduction to R June 20, 2013 59 / 59

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://cran.r-project.org/other-docs.html
http://www.bioconductor.org/help/course-materials/
http://watson.nci.nih.gov/~sdavis/
http://cran.r-project.org/manuals.html

	R Overview
	R Mechanics
	Resources for Getting Help
	Vectors
	Vectors
	Vector Operations
	Indexing Vectors
	String Handling in R
	Special Data Types

	Rectangular Data
	Matrix Operations
	Data Frames
	Basic Textual Input and Output
	Lists and Objects

	Plotting and Graphics
	Basics of Plotting

	Control Structures, Looping, and Applying
	Control Structures and Looping
	Applying

	Functions

